“药事”提醒:乱吃药,很麻烦******
蒋炜
国家和地方持续优化疫情防控措施,大众进一步提升对个人健康与防护的重视,近期网传的“囤药清单”“服药顺序”,引发了一波家庭备药热潮。
俗话说有备无患,家中药箱备足让不少人有了战胜新冠的信心和安心,但是也要提醒的是:当前,新冠病毒奥密克戎株感染,绝大多数感染者不用住院、甚至不用吃药,而自行乱吃药中毒乃至导致不可逆的器官损伤,不住院可不行了,必须要提高警惕。
同服多种感冒药,女孩急性肝损
近期,我们遇到这样一则病例:14岁女孩阿玫在感冒初期2天内,吃了7种感冒药。原以为多种药物合并吃,能好得更快些,但阿玫的感冒症状不仅没有得到缓解,反而出现了更严重的呕吐、腹痛等症状。在家人的陪同下,阿玫被送往当地医院急救,被医生诊断为急性肝损伤,究其原因就是合并服用了多种类型的感冒药和退热药!
临床上,因为自行乱服药物造成急性肝、肾损伤的现象屡有发生,主要表现为不同程度的转氨酶和/或碱性磷酸酶、肌酐等水平增高,严重可有发热、厌食、恶心、呕吐及腹部不适等症状。在此提醒大家:用药越多,不一定疗效越好,更不能自行将不同品类的药物混吃,切勿盲从网络上的服药建议。在此详细讲解几个比较集中的用药误区。
多种感冒药一起吃,效果会更好?
警惕:切勿自行服用过量药
如果突然感冒了,想必大多数人首先会选择自行购买非处方药,并未在医师或者药师指导下服用药物。然而,现在市面上的许多感冒药,特别是复方制剂、中成药、退烧药和止痛药中都含有对乙酰氨基酚的成分,服用前一定要仔细阅读说明书。
如果同时使用两种感冒药,或同时吃退烧药和止痛药,会造成对乙酰氨基酚摄入过量,从而会导致急性肝损伤,严重会引起肝衰竭甚至死亡。
常见的含有对乙酰氨基酚的感冒药:氨酚伪麻美芬片、酚麻美敏片、酚麻美敏混悬液等。
服用感冒药时,切记没有所谓“1+1>2”的功效,却有着“1+1>2”的用药风险。
不同品类药物可以混在一起吃?
警惕:药不能随便吃,更不能随意混着吃
我们一贯主张药不能随便吃,没有所谓“预防疾病吃点药”,有症状,对症服药。吃药时,也不能随意“混着吃”。要注意,这些药物组合不能有。
【不能同时服用:藿香正气水、头孢】
藿香正气水和头孢不可同时服用。由于藿香正气水中含有酒精,会在体内消化产生乙醇,而头孢类药物会抑制乙醇在体内的代谢,造成乙醇蓄积,严重时可诱发急性肝损害、呼吸暂停甚至死亡。
【不能同时服用:益生菌、抗生素】
益生菌和抗生素,若吃不对,吃了可能没效果。益生菌是我们俗称的肠道有益菌,而抗生素则大多是抗细菌药物,主要的机能就是杀死细菌。如果益生菌和抗生素一起吃,抗生素在杀死有害菌的同时,也会把益生菌杀死,那益生菌就白吃了。因此原则上建议,抗生素和益生菌的服用时间至少间隔两个小时以上。
不过,也有个别益生菌例外,比如抗生素相关性腹泻,医生会推荐布拉氏酵母菌,这种益生菌属于真菌,可以与抗生素一起服用。当然,出现了急性腹泻也不一定完全是细菌感染,特别是儿童,秋冬季尤其要警惕诺如病毒感染。
【不能同时服用:化痰药、止咳药】
化痰药和止咳药同时服用,当心堵塞呼吸道。化痰药作用不是让痰液凭空消失,而是把痰液变得更稀释,更容易被排出。稀释过的痰液体积会增大,如果不及时排出,特别容易堵塞呼吸道,所以我们要利用咳嗽的方式把痰排出去。
如果同时服用了止咳药,妨碍了排痰,则可能造成呼吸不畅。年龄越小的孩子,呼吸道堵塞的风险越高,排痰能力越差,越要警惕。因此,两者不建议同时服用,也不建议间隔时间服用。
【不能同时服用:止痛药、抗凝药】
抗凝药物会阻止凝血因子合成,常用于预防血栓形成;止痛药具有抗血小板的作用。二者作用类似,前者是阻止凝血,后者是延长凝血时间,同时服用会使得出血机会增加,容易引发患者内出血,如:皮肤淤血、淤斑,消化道出血等;若不慎外伤,易导致难以止血。
常见抗凝药:华法林、利伐沙班片、艾多沙班等;
常见止痛药:布洛芬、双氯芬酸钠等。
【不能同时服用:缓解鼻塞药、降血压药】
缓解鼻塞药与降血压药联用会影响降压效果。缓解鼻塞药通常含有减充血成分(主要是含麻黄碱素类药物),通过收缩血管达到缓解鼻塞的目的,但这可能导致血压上升,影响降血压药的药效。高血压患者尤其是规律服用降血压药的患者,当出现鼻塞不适时,要在专科医生或药师的指导下谨慎使用缓解鼻塞药,如麻黄碱滴鼻液、氨酚伪麻胶囊、氨酚伪麻那敏片、复方桔梗麻黄碱糖浆等。
这些常见药品,一定要记住不能混着用,相互作用很可能危害人体健康。
特殊人群根据需要可以自行服药?
警惕:特殊人群服用这些药物注意
【老人用药】
老年人的新陈代谢速度减慢,各个脏器功能减弱,药物敏感性增加,更容易发生药物不良反应。由于复方感冒药(如泰诺、新康泰克、白加黑等)中含伪麻黄碱成分,易导致血压升高、心跳加快等不良反应;前列腺肥大的老年人要慎用含伪麻黄碱的感冒药,服用后可能会加重病情,如小便不能排出、膀胱涨等。
【孕妇用药】
孕妇并不是不能用药,而是在该用药时必须用药,而且应当在医生或者药师的指导下用药。孕早期(5-14周)是胎儿脑部、神经以及器官发育的关键时期,无论是感冒病毒本身,还是抗感冒药都对胎儿有很大影响,建议孕早期避免用药,但孕期出现感冒发烧症状应及时就医。
【儿童用药】
由于婴幼儿肝、肾发育尚不成熟,对药物的清除和排泄较慢,用药时容易出现不良反应。世界卫生组织(WHO)以及中国的发热指南均推荐,儿童发热,可以选择对乙酰氨基酚或者布洛芬退热,但是不推荐两者联用或交替使用。
另外要注意:不要同时服用两种及以上感冒药,以免成分相同而产生用药过量;要使用儿童剂型的药物或有儿童推荐剂量的药物;不要一发热就急着用退热药,一般当体温超过38℃时,适于配合使用退热药。
(作者为复旦大学附属中山医院厦门医院大内科主任、消化科执行主任)
时空穿越不再是梦?科学家成功模拟“全息虫洞”!******
近日,科学家打造出
“全息虫洞”的消息冲上热搜
引发了大家的讨论
虫洞是什么?
我们真的能用它穿越时空吗?
今天一起了解虫洞
01虫洞?是虫子住的洞吗?
宇宙中的虫洞是科学家推测可能存在的一种特殊隧道,它的两头连接着两个遥远的时空,理论上说,如果能从虫洞的一端穿越到另一端,就能实现超越光速的时空旅行。
电影《星际穿越》中结尾主角就是进入了虫洞,发生了时空穿越。感兴趣的同学可以去看看哦!
图源:截图 电影星际穿越中的画面
要理解虫洞,我们首先要理解“黑洞”和“白洞”。在霍金的两大科普著作《时间简史》《果壳中的宇宙》的帮助下,黑洞这一概念早已深入人心。它是在恒心死亡时,由于体积收缩,密度变大,获得使光也无法逃脱的巨大密度的一种天体。而所谓白洞,其实就是和黑洞具有相反性质的特殊天体,特点是不断往外“吐”出东西,只发射而不吸收。
一个吞噬一切,一个“吐出”一切,大家可以想象一下,如果一个黑洞恰好连上了一个白洞时会怎么样呢?这时就会形成虫洞(worm hole)。
图源:中科院理论物理研究所 虫洞示意图
1915年,爱因斯坦提出了广义相对论,在爱因斯坦的理论中,空间和时间不再是绝对的、不可变的,而是可塑的、相互依存的,且它们会受物质存在的影响。1935年,爱因斯坦和他的助手罗森在广义相对论的框架下研究黑洞,首次提出“爱因斯坦-罗森桥”的概念,这座“桥”连接了时空中两个不同区域的通道。上世纪50年代,物理学家惠勒将这座桥命名为“虫洞”。
这听起来是不是很令人心动?进入虫洞,你可能会出现在宇宙的任意一个角落,甚至穿越时空,改写你的人生,重新选择你曾经后悔的事。然而,虽然广义相对论允许虫洞的存在,物理学家还从未在宇宙中观测到虫洞,目前只有黑洞被人类实际观测。
02量子虫洞又是啥?
虽然我们还没有在宇宙中发现虫洞,但现在科学家们创造出了虫洞,还观察到了信息在虫洞之间传递的现象。不过,先别想着穿越时空,这个虫洞并非上述所讲的引力虫洞,而是一个量子虫洞。
日前,英国《自然》(Nature)杂志发表的一篇论文首次报道了利用一台量子处理器对全息虫洞进行量子“模拟”。这个全息虫洞成功地将量子态通过虫洞,由一个量子系统传递到了另一个量子系统。
如果我们想象中可以时空旅行的虫洞叫作“时空虫洞”的话,量子态的量子虫洞则可以称之为“微型虫洞”。
那么,研究量子虫洞有什么用呢?
这是因为,广义相对论和量子力学虽然各自都发展了很长一段时间,但它们之间仍然有一个根本性的“冲突”——量子引力。
具体来说, “广义相对论”描述了引力且在恒星、行星、银河上等大尺度上都适用;而“量子力学”描述了其他3种作用在微观尺度的基本力。这二者是否有“握手言欢”的可能?这就要看量子引力的表现。
物理学家们当然想通过实验去检验,但很遗憾,量子引力的能量与尺度,此前的实验室条件是无法模拟和观测的。而这就是“全息”的用武之地,它可以帮助物理学家创建一个与原始系统相当,但不太复杂的系统。这类似于用二维全息图显示三维图像的细节。
03量子虫洞是怎么创造出来的?
2019年谷歌的物理学家们提出了一种实验假说,认为一个在物理实验室中可以再造的量子态,能被解释为在两个黑洞之间的虫洞中穿越的信息。
现在,来自谷歌、MIT、费米实验室和加州理工学院的科学家们,用9个量子位、1台量子计算机模拟出了对应的量子动力学。在同一个量子芯片中,他们创建了两个纠缠的量子系统,并将一个量子位放入其中一个量子系统。结果,他们在另一个量子系统中观察到了这个量子位“穿越虫洞”而来的信息,结果符合预期的引力性质。
这是什么意思?大家可以设想在两组纠缠粒子之间,穿上一根电线或其它任何的物理连接,让粒子们编码出虫洞的两个口。
在这种耦合作用下,操作其中一侧的粒子,会引起另一侧粒子的变化。这样就有可能在两侧粒子之间撑开一个虫洞。
图片来源:inqnet/A.Mueller 量子计算机的模拟显示了信息如何通过虫洞
尽管存在争议,但是这项前所未有的实验,探索了时空以某种方式从量子信息中产生的可能性。随着量子装置的不断改进,错误率会更低,芯片会更强,那么对引力现象的研究也会更加深入。
END
资料来源:中科院物理所、极目新闻、科技日报、环球科学、量子位
整理:董小娴
(文图:赵筱尘 巫邓炎)